Targeting the sarcomere to correct muscle function

Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Aficamten is a small-molecule cardiac myosin inhibitor designed to treat hypertrophic cardiomyopathy

Article Open access 23 July 2024

Targeting the sarcomere in inherited cardiomyopathies

Article 18 March 2022

Modulation of myosin by cardiac myosin binding protein-C peptides improves cardiac contractility in ex-vivo experimental heart failure models

Article Open access 14 March 2022

References

  1. Huxley, H. & Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature173, 973–976 (1954). ArticleCASPubMedGoogle Scholar
  2. Knoll, R. & Marston, S. On mechanosensation, acto/myosin interaction, and hypertrophy. Trends Cardiovasc. Med.22, 17–22 (2012). ArticleCASPubMedGoogle Scholar
  3. Kolb, S. J. & Kissel, J. T. Spinal muscular atrophy: a timely review. Arch. Neurol.68, 979–984 (2011). ArticlePubMedGoogle Scholar
  4. Rowland, L. P. & Shneider, N. A. Amyotrophic lateral sclerosis. N. Engl. J. Med.344, 1688–1700 (2001). ArticleCASPubMedGoogle Scholar
  5. Shefner, J. M., Wolff, A. A. & Meng, L. The relationship between tirasemtiv serum concentration and functional outcomes in patients with ALS. Amyotroph. Lateral Scler. Frontotemporal Degener.14, 582–585 (2013). ArticleCASPubMedGoogle Scholar
  6. Chou, R., Peterson, K. & Helfand, M. Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. J. Pain Symptom Manage.28, 140–175 (2004). ArticleCASPubMedGoogle Scholar
  7. Desai, A. S. & Stevenson, L. W. Rehospitalization for heart failure: predict or prevent? Circulation126, 501–506 (2012). ArticlePubMedGoogle Scholar
  8. Curtis, J. P. et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J. Am. Coll. Cardiol.42, 736–742 (2003). ArticlePubMedGoogle Scholar
  9. Lam, C. S., Donal, E., Kraigher-Krainer, E. & Vasan, R. S. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur. J. Heart Fail.13, 18–28 (2011). ArticlePubMedGoogle Scholar
  10. Lovelock, J. D. et al. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ. Res.110, 841–850 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  11. Boswell-Smith, V., Spina, D. & Page, C. P. Phosphodiesterase inhibitors. Br. J. Pharmacol.14, S252–S257 (2006). ArticleCASGoogle Scholar
  12. Bers, D. M. Calcium fluxes involved in control of cardiac myocyte contraction. Circ. Res.87, 275–281 (2000). ArticleCASPubMedGoogle Scholar
  13. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Invest.123, 46–52 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  14. Gailly, P. New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim. Biophys. Acta1600, 38–44 (2002). ArticleCASPubMedGoogle Scholar
  15. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev.85, 1093–1129 (2005). ArticleCASPubMedGoogle Scholar
  16. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell. Metab.17, 162–184 (2013). ArticleCASPubMedGoogle Scholar
  17. McCarthy, J. J. & Esser, K. A. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr. Opin. Clin. Nutr. Metab. Care13, 230–235 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  18. Frey, N. & Olson, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol.65, 45–79 (2003). ArticleCASPubMedGoogle Scholar
  19. Barry, S. P., Davidson, S. M. & Townsend, P. A. Molecular regulation of cardiac hypertrophy. Int. J. Biochem. Cell Biol.40, 2023–2039 (2008). ArticleCASPubMedGoogle Scholar
  20. Endoh, M. Amrinone, forerunner of novel cardiotonic agents, caused paradigm shift of heart failure pharmacotherapy. Circ. Res.113, 358–361 (2013). ArticleCASPubMedGoogle Scholar
  21. Sato, S., Talukder, M. A., Sugawara, H., Sawada, H. & Endoh, M. Effects of levosimendan on myocardial contractility and Ca 2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit. J. Mol. Cell Cardiol30, 1115–1128 (1998). ArticleCASPubMedGoogle Scholar
  22. Kawabata, Y. & Endoh, M. Effects of the positive inotropic agent Org 30029 on developed force and aequorin light transients in intact canine ventricular myocardium. Circ. Res.72, 597–606 (1993). ArticleCASPubMedGoogle Scholar
  23. Miller, D. J. & Steele, D. S. The 'calcium sensitising' effects of ORG30029 in saponin- or Triton-skinned rat cardiac muscle. Br. J. Pharmacol.100, 843–849 (1990). ArticleCASPubMedPubMed CentralGoogle Scholar
  24. Solaro, R. J., Pang, D. C. & Briggs, F. N. The purification of cardiac myofibrils with Triton X-100. Biochim. Biophys. Acta245, 259–262 (1971). ArticleCASPubMedGoogle Scholar
  25. Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem.66, 375–400 (1925). ArticleCASGoogle Scholar
  26. Papp, Z. et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int. J. Cardiol.159, 82–87 (2012). ArticlePubMedGoogle Scholar
  27. Boyle, K. L. & Leech, E. A review of the pharmacology and clinical uses of pimobendan. J. Vet. Emerg. Crit. Care (San Antonio)22, 398–408 (2012). ArticleGoogle Scholar
  28. van Meel, J. C., Zimmermann, R., Diederen, W., Erdman, E. & Mrwa, U. Increase in calcium sensitivity of cardiac myofibrils contributes to the cardiotonic action of sulmazole. Biochem. Pharmacol.37, 213–220 (1988). ArticleCASPubMedGoogle Scholar
  29. Bethke, T. et al. High selectivity for inhibition of phosphodiesterase III and positive inotropic effects of MCI-154 in guinea pig myocardium. J. Cardiovasc. Pharmacol.21, 847–855 (1993). ArticleCASPubMedGoogle Scholar
  30. Sugawara, H. et al. Investigation on SCH00013, a novel cardiotonic agent with Ca ++ sensitizing action. 3rd communication: stereoselectivity of the enantiomers in cardiovascular effects. Arzneimittelforschung49, 412–419 (1999). CASPubMedGoogle Scholar
  31. de Boer, J. et al. Human bronchial cyclic nucleotide phosphodiesterase isoenzymes: biochemical and pharmacological analysis using selective inhibitors. Br. J. Pharmacol.106, 1028–1034 (1992). ArticleCASPubMedPubMed CentralGoogle Scholar
  32. Keravis, T. & Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol.165, 1288–1305 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  33. Bethke, T. et al. Phosphodiesterase inhibition by enoximone in preparations from nonfailing and failing human hearts. Arzneimittelforschung42, 437–445 (1992). CASPubMedGoogle Scholar
  34. Szilagyi, S. et al. The effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and phosphodiesterase enzymes of the guinea pig. Eur. J. Pharmacol.486, 67–74 (2004). A detailed study of the effective concentrations of levosimendan and its active metabolite, OR-1896, with respect to positive inotropic activity, calcium sensitization and inhibition of PDE3 and PDE4.ArticleCASPubMedGoogle Scholar
  35. Mika, D. et al. Differential regulation of cardiac excitation–contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc. Res.100, 336–346 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  36. Roubille, F. & Tardif, J. C. New therapeutic targets in cardiology: heart failure and arrhythmia: HCN channels. Circulation127, 1986–1996 (2013). ArticlePubMedGoogle Scholar
  37. Perera, R. K. & Nikolaev, V. O. Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol. (Oxf.)207, 650–662 (2013). ArticleCASGoogle Scholar
  38. Cazorla, O., Lucas, A., Poirier, F., Lacampagne, A. & Lezoualc'h, F. The cAMP binding protein Epac regulates cardiac myofilament function. Proc. Natl Acad. Sci. USA106, 14144–14149 (2009). A unique study showing that cardiac calcium sensitivity can be enhanced through a novel pathway involving EPAC, PKC, calcium/calmodulin kinase II, and an uncharacterized phosphorylation site on cardiac troponin I.ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Wendt, I. R. & Stephenson, D. G. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch.398, 210–216 (1983). ArticleCASPubMedGoogle Scholar
  40. Parsons, W. J., Ramkumar, V. & Stiles, G. L. The new cardiotonic agent sulmazole is an A1 adenosine receptor antagonist and functionally blocks the inhibitory regulator, Gi. Mol. Pharmacol.33, 441–448 (1988). This study uniquely describes the cross-reactivity between PDE3 inhibition and adenosine receptor antagonism of several compounds.CASPubMedGoogle Scholar
  41. Kitada, Y., Kobayashi, M., Narimatsu, A. & Ohizumi, Y. Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca ++ binding by MCI-154, a novel cardiotonic agent. J. Pharmacol. Exp. Ther.250, 272–277 (1989). CASPubMedGoogle Scholar
  42. Haikala, H. et al. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J. Mol. Cell Cardiol.27, 1859–1866 (1995). ArticleCASPubMedGoogle Scholar
  43. Pollesello, P. et al. Binding of a new Ca 2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J. Biol. Chem.269, 28584–28590 (1994). ArticleCASPubMedGoogle Scholar
  44. Kleerekoper, Q. & Putkey, J. A. Drug binding to cardiac troponin C. J. Biol. Chem.274, 23932–23939 (1999). ArticleCASPubMedGoogle Scholar
  45. Sorsa, T., Pollesello, P., Permi, P., Drakenberg, T. & Kilpelainen, I. Interaction of levosimendan with cardiac troponin C in the presence of cardiac troponin I peptides. J. Mol. Cell Cardiol.35, 1055–1061 (2003). ArticleCASPubMedGoogle Scholar
  46. Robertson, I. M., Baryshnikova, O. K., Li, M. X. & Sykes, B. D. Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex. Biochemistry47, 7485–7495 (2008). ArticleCASPubMedGoogle Scholar
  47. Sorsa, T. et al. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J. Biol. Chem.276, 9337–9343 (2001). ArticleCASPubMedGoogle Scholar
  48. Orstavik, O. et al. PDE3-inhibition by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br. J. Pharmacol.171, 5169–5181 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  49. Bodi, A., Szilagyi, S., Edes, I. & Papp, Z. The cardiotonic effects of levosimendan in guinea pig hearts are modulated by β-adrenergic stimulation. Gen. Physiol. Biophys.22, 313–327 (2003). CASPubMedGoogle Scholar
  50. Erdei, N., Papp, Z., Pollesello, P., Edes, I. & Bagi, Z. The levosimendan metabolite OR-1896 elicits vasodilation by activating the KATP and BKCa channels in rat isolated arterioles. Br. J. Pharmacol.148, 696–702 (2006). ArticleCASPubMedPubMed CentralGoogle Scholar
  51. Yoshida, H. et al. A phosphodiesterase 3 inhibitor, K-134, improves hindlimb skeletal muscle circulation in rat models of peripheral arterial disease. Atherosclerosis221, 84–90 (2012). ArticleCASPubMedGoogle Scholar
  52. Nieminen, M. S. et al. Levosimendan: current data, clinical use and future development. Heart Lung Vessel5, 227–245 (2013). CASPubMedPubMed CentralGoogle Scholar
  53. Landoni, G. et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit. Care Med.40, 634–646 (2012). ArticleCASPubMedGoogle Scholar
  54. Mebazaa, A. et al. Levosimendan versus dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA297, 1883–1891 (2007). A report of one of the largest multi-centre trials involving the calcium sensitizer levosimendan, showing no mortality benefit, which is in contrast to several smaller trials.ArticleCASPubMedGoogle Scholar
  55. Packer, M. et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail.1, 103–111 (2013). This study reports the REVIVE II trial results on levosimedan, which had a similar outcome to the SURVIVE trial. Publication of the REVIVE II results was delayed for many years.ArticlePubMedGoogle Scholar
  56. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med.325, 1468–1475 (1991). ArticleCASPubMedGoogle Scholar
  57. Amsallem, E., Kasparian, C., Haddour, G., Boissel, J. P. & Nony, P. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst. Rev.1, CD002230 (2005). Google Scholar
  58. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol62, e147–e239 (2013). ArticlePubMedGoogle Scholar
  59. McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J.33, 1787–1847 (2012). ArticlePubMedGoogle Scholar
  60. Baudenbacher, F. et al. Myofilament Ca 2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J. Clin. Invest.118, 3893–3903 (2008). CASPubMedPubMed CentralGoogle Scholar
  61. Parry, D. A. & Squire, J. M. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol.75, 33–55 (1973). ArticleCASPubMedGoogle Scholar
  62. Li, M. X., Spyracopoulos, L. & Sykes, B. D. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry38, 8289–8298 (1999). ArticleCASPubMedGoogle Scholar
  63. Rieck, D. C., Li, K. L., Ouyang, Y., Solaro, R. J. & Dong, W. J. Structural basis for the in situ Ca 2+ sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges. Arch. Biochem. Biophys.537, 198–209 (2013). ArticleCASPubMedGoogle Scholar
  64. Sweeney, H. L. & Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys.39, 539–557 (2010). ArticleCASPubMedGoogle Scholar
  65. Webb, M. et al. The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Biochemistry52, 6437–6444 (2013). ArticleCASPubMedGoogle Scholar
  66. Margossian, S. S. & Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol.85, 55–71 (1982). ArticleCASPubMedGoogle Scholar
  67. Pardee, J. D. & Spudich, J. A. Purification of muscle actin. Methods Enzymol.85, 164–181 (1982). ArticleCASPubMedGoogle Scholar
  68. Smillie, L. B. Preparation and identification of α- and β-tropomyosins. Methods Enzymol.85, 234–241 (1982). ArticleCASPubMedGoogle Scholar
  69. Potter, J. D. Preparation of troponin and its subunits. Methods Enzymol.85, 241–263 (1982). ArticleCASPubMedGoogle Scholar
  70. Spudich, J. A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem.246, 4866–4871 (1971). A classical paper describing the purification and reconstitution of myosin fragments, actin, troponin and tropomyosin.ArticleCASPubMedGoogle Scholar
  71. Malik, F. I. & Morgan, B. P. Cardiac myosin activation part 1: from concept to clinic. J. Mol. Cell Cardiol51, 454–461 (2011). A detailed description of the compound screening and development strategy that produced the cardiac myosin activator omecamtiv mecarbil.ArticleCASPubMedGoogle Scholar
  72. Malik, F. I. et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science331, 1439–1443 (2011). A comprehensive study of the binding of omecamtiv mecarbil to myosin, its effects on the actin–myosin crossbridging cycle, and its physiological effects on the heart.ArticleCASPubMedPubMed CentralGoogle Scholar
  73. Wang, Y., Ajtai, K. & Burghardt, T. P. Analytical comparison of natural and pharmaceutical ventricular myosin activators. Biochemistry53, 5298–5306 (2014). ArticleCASPubMedGoogle Scholar
  74. Wolska, B. M. et al. CGP-48506 increases contractility of ventricular myocytes and myofilaments by effects on actin–myosin reaction. Am. J. Physiol.270, H24–H32 (1996). CASPubMedGoogle Scholar
  75. Palmer, S., Di Bello, S., Davenport, S. L. & Herzig, J. W. The novel inotropic agent CGP 48506 alters force primarily by Ca 2+ -independent mechanisms in porcine skinned trabeculae. Cardiovasc. Res.32, 411–421 (1996). ArticleCASPubMedGoogle Scholar
  76. Brixius, K., Mehlhorn, U., Bloch, W. & Schwinger, R. H. Different effect of the Ca 2+ sensitizers EMD 57033 and CGP 48506 on cross-bridge cycling in human myocardium. J. Pharmacol. Exp. Ther.295, 1284–1290 (2000). A study of the contrasting effects of two myosin activators, EMD 57033 and CGP 48506, and one myosin inhibitor, butanedione monoxime, on calcium sensitivity, actin–myosin crossbridge cycling, force generation and tension cost.CASPubMedGoogle Scholar
  77. Ferroni, C. et al. A novel positive inotropic substance enhances contractility without increasing the Ca 2+ transient in rat myocardium. J. Mol. Cell Cardiol.23, 325–331 (1991). ArticleCASPubMedGoogle Scholar
  78. Solaro, R. J. et al. Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ. Res.73, 981–990 (1993). These authors show that EMD 57033 acts directly on the actin–myosin crossbridging cycle, making it one of the earliest identified myosin activators. Its enantiomer, EMD 57439, does not share this activity and is a more potent PDE inhibitor.ArticleCASPubMedGoogle Scholar
  79. Radke, M. B. et al. Small molecule-mediated refolding and activation of myosin motor function. Elife3, e01603 (2014). ArticlePubMedPubMed CentralCASGoogle Scholar
  80. Bond, L. M., Tumbarello, D. A., Kendrick-Jones, J. & Buss, F. Small-molecule inhibitors of myosin proteins. Future Med. Chem.5, 41–52 (2013). ArticleCASPubMedGoogle Scholar
  81. Allingham, J. S., Smith, R. & Rayment, I. The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Struct. Mol. Biol.12, 378–379 (2005). This paper reports the atomic resolution structure of a sarcomeric myosin modulator, blebbistatin, bound to myosin. Other myosin modulators are believed to bind to different sites.ArticleCASGoogle Scholar
  82. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem.279, 35557–35563 (2004). ArticleCASPubMedGoogle Scholar
  83. Rodriguez, H. M. et al. Modulation of the cardiac sarcomere by a small molecule agent MYK0000461: a potential therapeutic for the treatment of genetic hypertrophic cardiomyopathies. Biophys. J.106, 562a (2015). ArticleGoogle Scholar
  84. Teerlink, J. R. et al. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet378, 667–675 (2011). ArticleCASPubMedGoogle Scholar
  85. Cleland, J. G. et al. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet378, 676–683 (2011). ArticleCASPubMedGoogle Scholar
  86. Teerlink, J. R. & McDonagh, T. ATOMIC-AHF: acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure: results from ATOMIC-AHF. European Society of Cardiology[online], (2013).
  87. Li, M. X. et al. Kinetic studies of calcium and cardiac troponin I peptide binding to human cardiac troponin C using NMR spectroscopy. Eur. Biophys. J.31, 245–256 (2002). ArticleCASPubMedGoogle Scholar
  88. Takeda, S., Yamashita, A., Maeda, K. & Maeda, Y. Structure of the core domain of human cardiac troponin in the Ca 2+ -saturated form. Nature424, 35–41 (2003). This important X-ray crystal structure remains the most comprehensive model of the cardiac troponin complex to date.ArticleCASPubMedGoogle Scholar
  89. Davis, J. P. et al. Effects of thin and thick filament proteins on calcium binding and exchange with cardiac troponin C. Biophys. J.92, 3195–3206 (2007). A fluorescently labelled cardiac troponin C effectively probes calcium affinity of the troponin complex in the presence of tropomyosin, actin and myosin, demonstrating how calcium sensitivity can be affected by all of these components.ArticleCASPubMedPubMed CentralGoogle Scholar
  90. Pineda-Sanabria, S. E., Julien, O. & Sykes, B. D. Versatile cardiac troponin chimera for muscle protein structural biology and drug discovery. ACS Chem. Biol.9, 2121–2130 (2014). ArticleCASPubMedGoogle Scholar
  91. Itoh, H., Tanaka, T., Mitani, Y. & Hidaka, H. The binding of the calcium channel blocker, bepridil, to calmodulin. Biochem. Pharmacol.35, 217–220 (1986). ArticleCASPubMedGoogle Scholar
  92. Solaro, R. J., Bousquet, P. & Johnson, J. D. Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca ++ binding by bepridil. J. Pharmacol. Exp. Ther.238, 502–507 (1986). CASPubMedGoogle Scholar
  93. Li, Y., Love, M. L., Putkey, J. A. & Cohen, C. Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc. Natl Acad. Sci. USA97, 5140–5145 (2000). An X-ray crystal structure demonstrating how the calcium sensitizer bepridil stabilizes the calcium-bound open conformation of the regulatory N-terminal domain of troponin C.ArticleCASPubMedPubMed CentralGoogle Scholar
  94. Wang, X., Li, M. X. & Sykes, B. D. Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147-163 and bepridil. J. Biol. Chem.277, 31124–31133 (2002). NMR structures demonstrating how the calcium sensitizer bepridil binds in the interface between troponin C and the switch region of troponin I.ArticleCASPubMedGoogle Scholar
  95. Vinogradova, M. V. et al. Ca 2+ -regulated structural changes in troponin. Proc. Natl Acad. Sci. USA102, 5038–5043 (2005). This crystal structure of the fast skeletal muscle troponin complex serendipitously shows how anapoe detergent (used to enhance crystallization) binds to the interface between troponin C and troponin I to act as a calcium sensitizer.ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Silver, P. J., Pinto, P. B. & Dachiw, J. Modulation of vascular and cardiac contractile protein regulatory mechanisms by calmodulin inhibitors and related compounds. Biochem. Pharmacol.35, 2545–2551 (1986). ArticleCASPubMedGoogle Scholar
  97. Adhikari, B. B. & Wang, K. Interplay of troponin- and myosin-based pathways of calcium activation in skeletal and cardiac muscle: the use of W7 as an inhibitor of thin filament activation. Biophys. J.86, 359–370 (2004). ArticleCASPubMedPubMed CentralGoogle Scholar
  98. Li, M. X., Hoffman, R. M. & Sykes, B. D. Interaction of cardiac troponin C with calmodulin antagonist [corrected] W7 in the presence of three functional regions of cardiac troponin I. Biochemistry45, 9833–9840 (2006). ArticleCASPubMedGoogle Scholar
  99. Oleszczuk, M., Robertson, I. M., Li, M. X. & Sykes, B. D. Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction. J. Mol. Cell Cardiol.48, 925–933 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  100. Russell, A. J. et al. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nature Med.18, 452–455 (2012). A demonstration of the troponin-binding properties and muscle-activating effects of tirasemtiv, the first high-affinity fast skeletal muscle troponin activator to be tested in clinical trials.ArticleCASPubMedGoogle Scholar
  101. Bauer, T. A. et al. Effect of tirasemtiv, a selective activator of the fast skeletal muscle troponin complex, in patients with peripheral artery disease. Vasc. Med.19, 297–306 (2014). ArticleCASPubMedGoogle Scholar
  102. Shefner, J. M., Watson, M. L., Meng, L. & Wolff, A. A. A study to evaluate safety and tolerability of repeated doses of tirasemtiv in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener.14, 574–581 (2013). ArticleCASPubMedGoogle Scholar
  103. de Winter, J. M. et al. Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations. J. Med. Genet.50, 383–392 (2013). ArticlePubMedGoogle Scholar
  104. Spyracopoulos, L. et al. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry36, 12138–12146 (1997). ArticleCASPubMedGoogle Scholar
  105. Herron, T. J. et al. Ca 2+ -independent positive molecular inotropy for failing rabbit and human cardiac muscle by α-myosin motor gene transfer. FASEB J.24, 415–424 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  106. Day, S. M. et al. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nature Med.12, 181–189 (2006). ArticleCASPubMedGoogle Scholar
  107. Merkulov, S., Chen, X., Chandler, M. P. & Stelzer, J. E. In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ. Heart Fail.5, 635–644 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  108. Mearini, G. et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nature Commun.5, 5515 (2014). ArticleCASGoogle Scholar
  109. Mamidi, R., Li, J., Gresham, K. S. & Stelzer, J. E. Cardiac myosin binding protein-C: a novel sarcomeric target for gene therapy. Pflugers Arch.466, 225–230 (2014). ArticleCASPubMedGoogle Scholar
  110. Maron, B. J., Maron, M. S. & Semsarian, C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J. Am. Coll. Cardiol.60, 705–715 (2012). ArticlePubMedGoogle Scholar
  111. Sen-Chowdhry, S., Syrris, P. & McKenna, W. J. Genetics of restrictive cardiomyopathy. Heart Fail. Clin.6, 179–186 (2010). ArticlePubMedGoogle Scholar
  112. Sanbe, A. Dilated cardiomyopathy: a disease of the myocardium. Biol. Pharm. Bull.36, 18–22 (2013). ArticleCASPubMedGoogle Scholar
  113. McNally, E. M., Golbus, J. R. & Puckelwartz, M. J. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest.123, 19–26 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  114. Goldfarb, L. G. & Dalakas, M. C. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J. Clin. Invest.119, 1806–1813 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  115. Teekakirikul, P., Kelly, M. A., Rehm, H. L., Lakdawala, N. K. & Funke, B. H. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J. Mol. Diagn.15, 158–170 (2013). ArticlePubMedGoogle Scholar
  116. Laing, N. G. & Nowak, K. J. When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays27, 809–822 (2005). ArticleCASPubMedGoogle Scholar
  117. Tajsharghi, H. & Oldfors, A. Myosinopathies: pathology and mechanisms. Acta Neuropathol.125, 3–18 (2013). ArticleCASPubMedGoogle Scholar
  118. Wallgren-Pettersson, C., Sewry, C. A., Nowak, K. J. & Laing, N. G. Nemaline myopathies. Semin. Pediatr. Neurol.18, 230–238 (2011). ArticlePubMedGoogle Scholar
  119. Lehtokari, V. L. et al. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum. Mutat.27, 946–956 (2006). ArticleCASPubMedGoogle Scholar
  120. Lawlor, M. W. et al. Novel mutations in NEB cause abnormal nebulin expression and markedly impaired muscle force generation in severe nemaline myopathy. Skelet. Muscle1, 23 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  121. Claeys, K. G. & Fardeau, M. Myofibrillar myopathies. Handb. Clin. Neurol.113, 1337–1342 (2013). ArticlePubMedGoogle Scholar
  122. de Tombe, P. P. et al. Myofilament length dependent activation. J. Mol. Cell Cardiol.48, 851–858 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar
  123. Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap, S. V. & Bloch, R. J. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol. Rev.89, 1217–1267 (2009). ArticleCASPubMedGoogle Scholar
  124. Mateja, R. D. & de Tombe, P. P. Myofilament length-dependent activation develops within 5 ms in guinea-pig myocardium. Biophys. J.103, L13–L15 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  125. Zhang, Z. et al. Comparison of the Young–Laplace law and finite element based calculation of ventricular wall stress: implications for postinfarct and surgical ventricular remodeling. Ann. Thorac. Surg.91, 150–156 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  126. Rudolf, R. et al. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front. Physiol.4, 290 (2013). ArticlePubMedPubMed CentralGoogle Scholar
  127. Lygren, B. & Tasken, K. Compartmentalized cAMP signalling is important in the regulation of Ca 2+ cycling in the heart. Biochem. Soc. Trans.34, 489–491 (2006). ArticleCASPubMedGoogle Scholar
  128. Boontje, N. M. et al. Enhanced myofilament responsiveness upon β-adrenergic stimulation in post-infarct remodeled myocardium. J. Mol. Cell Cardiol.50, 487–499 (2011). ArticleCASPubMedGoogle Scholar
  129. Gautel, M., Zuffardi, O., Freiburg, A. & Labeit, S. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J.14, 1952–1960 (1995). ArticleCASPubMedPubMed CentralGoogle Scholar
  130. Gruen, M. Prinz, H. & Gautel, M. cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion. FEBS Lett.453, 254–259 (1999). ArticleCASPubMedGoogle Scholar
  131. Kruger, M. & Linke, W. A. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J. Muscle Res. Cell. Motil.27, 435–444 (2006). ArticleCASPubMedGoogle Scholar
  132. Solaro, R. J., Moir, A. J. & Perry, S. V. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature262, 615–617 (1976). ArticleCASPubMedGoogle Scholar
  133. Wijnker, P. J. et al. Impact of site-specific phosphorylation of protein kinase A sites Ser23 and Ser24 of cardiac troponin I in human cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol.304, H260–H268 (2013). ArticleCASPubMedGoogle Scholar
  134. Hamdani, N. et al. Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. Eur. Heart J.30, 1863–1872 (2009). This article shows that increased calcium sensitivity is observed in heart tissue from both HFrEF and HFpEF patients. This is attributed to decreased phosphorylation of troponin I, which is further enhanced byβ1-adrenoceptor blockade.ArticleCASPubMedGoogle Scholar
  135. van Dijk, S. J. et al. A piece of the human heart: variance of protein phosphorylation in left ventricular samples from end-stage primary cardiomyopathy patients. J. Muscle Res. Cell. Motil.30, 299–302 (2009). ArticleCASPubMedGoogle Scholar
  136. MacIntosh, B. R., Holash, R. J. & Renaud, J. M. Skeletal muscle fatigue — regulation of excitation-contraction coupling to avoid metabolic catastrophe. J. Cell Sci.125, 2105–2114 (2012). CASPubMedGoogle Scholar
  137. Kamm, K. E. & Stull, J. T. Signaling to myosin regulatory light chain in sarcomeres. J. Biol. Chem.286, 9941–9947 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  138. Scruggs, S. B. & Solaro, R. J. The significance of regulatory light chain phosphorylation in cardiac physiology. Arch. Biochem. Biophys.510, 129–134 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  139. Grimm, M. et al. Key role of myosin light chain (MLC) kinase-mediated MLC2a phosphorylation in the α1-adrenergic positive inotropic effect in human atrium. Cardiovasc. Res.65, 211–220 (2005). ArticleCASPubMedGoogle Scholar
  140. Flashman, E., Redwood, C., Moolman-Smook, J. & Watkins, H. Cardiac myosin binding protein C: its role in physiology and disease. Circ. Res.94, 1279–1289 (2004). ArticleCASPubMedGoogle Scholar
  141. Lowey, S., Slayter, H. S., Weeds, A. G. & Baker, H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. Mol. Biol.42, 1–29 (1969). ArticleCASPubMedGoogle Scholar
  142. Al-Khayat, H. A., Kensler, R. W., Squire, J. M., Marston, S. B. & Morris, E. P. Atomic model of the human cardiac muscle myosin filament. Proc. Natl Acad. Sci. USA110, 318–323 (2013). ArticleCASPubMedGoogle Scholar
  143. Craig, R. & Woodhead, J. L. Structure and function of myosin filaments. Curr. Opin. Struct. Biol.16, 204–212 (2006). ArticleCASPubMedGoogle Scholar
  144. Weeds, A. G. & Lowey, S. Substructure of the myosin molecule. II. The light chains of myosin. J. Mol. Biol.61, 701–725 (1971). ArticleCASPubMedGoogle Scholar
  145. Freiburg, A. & Gautel, M. A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur. J. Biochem.235, 317–323 (1996). ArticleCASPubMedGoogle Scholar
  146. Miyamoto, C. A., Fischman, D. A. & Reinach, F. C. The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C. J. Muscle Res. Cell. Motil.20, 703–715 (1999). ArticleCASPubMedGoogle Scholar
  147. Bhuiyan, M. S., Gulick, J., Osinska, H., Gupta, M. & Robbins, J. Determination of the critical residues responsible for cardiac myosin binding protein C's interactions. J. Mol. Cell Cardiol.53, 838–847 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  148. Sousa, D. R., Stagg, S. M. & Stroupe, M. E. Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state. J. Mol. Biol.425, 4544–4555 (2013). ArticleCASPubMedGoogle Scholar
  149. White, S. P., Cohen, C. & Phillips, G. N. J. Structure of co-crystals of tropomyosin and troponin. Nature325, 826–828 (1987). ArticleCASPubMedGoogle Scholar
  150. Gourinath, S. et al. Crystal structure of scallop myosin s1 in the pre-power stroke state to 2.6 Å resolution: flexibility and function in the head. Structure11, 1621–1627 (2003). ArticleCASPubMedGoogle Scholar
  151. Behrmann, E. et al. Structure of the rigor actin–tropomyosin–myosin complex. Cell150, 327–338 (2012). An 8 Å-resolution description of the actin–tropomyosin–myosin complex by cryo-electron microscopy, identifying key residues implicated in myopathies. The authors present a detailed model of how actin binding to myosin induces phosphate and nucleotide release and initiation of the power stroke.ArticleCASPubMedPubMed CentralGoogle Scholar
  152. Sia, S. K. et al. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J. Biol. Chem.272, 18216–18221 (1997). ArticleCASPubMedGoogle Scholar
  153. Eichmuller, C. & Skrynnikov, N. R. A new amide proton R1ρ experiment permits accurate characterization of microsecond time-scale conformational exchange. J. Biomol. NMR32, 281–293 (2005). ArticleCASPubMedGoogle Scholar
  154. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell62, 999–1006 (1990). ArticleCASPubMedGoogle Scholar
  155. Hernandez, O. M., Jones, M., Guzman, G. & Szczesna-Cordary, D. Myosin essential light chain in health and disease. Am. J. Physiol. Heart Circ. Physiol.292, H1643–H1654 (2007). ArticleCASPubMedGoogle Scholar
  156. Poetter, K. et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genet.13, 63–69 (1996). ArticleCASPubMedGoogle Scholar
  157. Ha, K. et al. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum. Mol. Genet.22, 4967–4977 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  158. Schlossarek, S., Mearini, G. & Carrier, L. Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J. Mol. Cell Cardiol.50, 613–620 (2011). ArticleCASPubMedGoogle Scholar
  159. Marston, S., Copeland, O., Gehmlich, K., Schlossarek, S. & Carrier, L. How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J. Muscle Res. Cell. Motil.33, 75–80 (2012). ArticleCASPubMedGoogle Scholar
  160. Watkins, H. et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet.11, 434–437 (1995). ArticleCASPubMedGoogle Scholar
  161. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med.366, 619–628 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  162. Chauveau, C. et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol. Genet.23, 980–991 (2013). ArticlePubMedPubMed CentralCASGoogle Scholar
  163. Wang, K., McClure, J. & Tu, A. Titin: major myofibrillar components of striated muscle. Proc. Natl Acad. Sci. USA76, 3698–3702 (1979). ArticleCASPubMedPubMed CentralGoogle Scholar
  164. Nowak, K. J. et al. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genet.23, 208–212 (1999). ArticleCASPubMedGoogle Scholar
  165. Mogensen, J. et al. Clinical and genetic characteristics of α cardiac actin gene mutations in hypertrophic cardiomyopathy. J. Med. Genet.41, e10 (2004). ArticleCASPubMedPubMed CentralGoogle Scholar
  166. Watkins, H. et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med.332, 1058–1064 (1995). ArticleCASPubMedGoogle Scholar
  167. Donner, K. et al. Mutations in the β-tropomyosin (TPM2) gene—a rare cause of nemaline myopathy. Neuromuscul. Disord.12, 151–158 (2002). ArticlePubMedGoogle Scholar
  168. Sung, S. S. et al. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet.72, 681–690 (2003). ArticleCASPubMedPubMed CentralGoogle Scholar
  169. Kee, A. J. & Hardeman, E. C. Tropomyosins in skeletal muscle diseases. Adv. Exp. Med. Biol.644, 143–157 (2008). ArticleCASPubMedGoogle Scholar
  170. Laing, N. G. et al. A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nature Genet.9, 75–79 (1995). ArticleCASPubMedGoogle Scholar
  171. Johnston, J. J. et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am. J. Hum. Genet.67, 814–821 (2000). ArticleCASPubMedPubMed CentralGoogle Scholar
  172. Sung, S. S. et al. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am. J. Hum. Genet.73, 212–214 (2003). ArticlePubMedPubMed CentralGoogle Scholar
  173. Kimura, A. et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet.16, 379–382 (1997). ArticleCASPubMedGoogle Scholar
  174. Landstrom, A. P. et al. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J. Mol. Cell Cardiol45, 281–288 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  175. Purevjav, E. et al. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J. Am. Coll. Cardiol56, 1493–1502 (2010). ArticlePubMedPubMed CentralGoogle Scholar
  176. Pappas, C. T., Bliss, K. T., Zieseniss, A. & Gregorio, C. C. The nebulin family: an actin support group. Trends Cell Biol.21, 29–37 (2011). ArticleCASPubMedGoogle Scholar
  177. Millevoi, S. et al. Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J. Mol. Biol.282, 111–123 (1998). ArticleCASPubMedGoogle Scholar
  178. Luther, P. K. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J. Muscle Res. Cell. Motil.30, 171–185 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  179. Chiu, C. et al. Mutations in α-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J. Am. Coll. Cardiol.55, 1127–1135 (2010). ArticleCASPubMedGoogle Scholar
  180. Moreira, E. S. et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nature Genet.24, 163–166 (2000). ArticleCASPubMedGoogle Scholar
  181. Hayashi, T. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol.44, 2192–2201 (2004). ArticleCASPubMedGoogle Scholar
  182. Razinia, Z., Makela, T., Ylanne, J. & Calderwood, D. A. Filamins in mechanosensing and signaling. Annu. Rev. Biophys.41, 227–246 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  183. Vorgerd, M. et al. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am. J. Hum. Genet.77, 297–304 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  184. Faulkner, G. et al. FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J. Biol. Chem.275, 41234–41242 (2000). ArticleCASPubMedGoogle Scholar
  185. Osio, A. et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res.100, 766–768 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  186. Purevjav, E. et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum. Mol. Genet.21, 2039–2053 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  187. Meyer, T. et al. Novel mutations in the sarcomeric protein myopalladin in patients with dilated cardiomyopathy. Eur. J. Hum. Genet.21, 294–300 (2013). ArticleCASPubMedGoogle Scholar
  188. Bang, M. L. et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol.153, 413–427 (2001). ArticleCASPubMedPubMed CentralGoogle Scholar
  189. Salmikangas, P. et al. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Mol. Genet.12, 189–203 (2003). ArticleCASPubMedGoogle Scholar
  190. Hauser, M. A. et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol. Genet.9, 2141–2147 (2000). ArticleCASPubMedGoogle Scholar
  191. Selcen, D. & Engel, A. G. Mutations in myotilin cause myofibrillar myopathy. Neurology62, 1363–1371 (2004). ArticleCASPubMedGoogle Scholar
  192. von Nandelstadh, P. et al. A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: a common link for Z-disc myopathies. Mol. Cell. Biol.29, 822–834 (2009). ArticleCASPubMedGoogle Scholar
  193. Strach, K. et al. ZASPopathy with childhood-onset distal myopathy. J. Neurol.259, 1494–1496 (2012). ArticlePubMedGoogle Scholar
  194. Selcen, D. & Engel, A. G. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol.57, 269–276 (2005). ArticleCASPubMedGoogle Scholar
  195. Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol.42, 2014–2027 (2003). ArticleCASPubMedGoogle Scholar
  196. Arimura, T. et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J. Biol. Chem.279, 6746–6752 (2004). ArticleCASPubMedGoogle Scholar
  197. Lin, C. et al. Cypher/ZASP is a novel A-kinase anchoring protein. J. Biol. Chem.288, 29403–29413 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  198. Limouze, J., Straight, A. F., Mitchison, T. & Sellers, J. R. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell. Motil.25, 337–341 (2004). ArticleCASPubMedGoogle Scholar
  199. Cheung, A. et al. A small-molecule inhibitor of skeletal muscle myosin II. Nature Cell Biol.4, 83–88 (2002). ArticleCASPubMedGoogle Scholar
  200. McKillop, D. F., Fortune, N. S., Ranatunga, K. W. & Geeves, M. A. The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres. J. Muscle Res. Cell. Motil.15, 309–318 (1994). ArticleCASPubMedGoogle Scholar
  201. Kischel, P., Stevens, L. & Mounier, Y. Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles. Br. J. Pharmacol.128, 767–773 (1999). ArticleCASPubMedPubMed CentralGoogle Scholar
  202. Robertson, I. M., Sun, Y. B., Li, M. X. & Sykes, B. D. A structural and functional perspective into the mechanism of Ca 2+ -sensitizers that target the cardiac troponin complex. J. Mol. Cell Cardiol.49, 1031–1041 (2010). ArticleCASPubMedPubMed CentralGoogle Scholar

Acknowledgements

The authors' work is supported by Heart and Stroke Foundation of Canada, grant-in-aid G-14-0005884, and the Canadian Institutes of Health Research, operating grant 37769.